Skip to content

linalg

Basic linear algebra method.

BSD 3-Clause License Copyright © 2019-2020, Daniel Nagel All rights reserved.

left_eigenvectors(matrix, nvals=None)

Estimate left eigenvectors.

Estimates the left eigenvectors and corresponding eigenvalues of a quadratic matrix.

Parameters:

  • matrix (ndarray) –

    Quadratic 2d matrix eigenvectors and eigenvalues or determined of.

  • nvals (int, default: None ) –

    Number of returned eigenvalues and -vectors. Using ensures probability of real valued matrices.

Returns:

  • eigenvalues ( ndarray ) –

    N eigenvalues sorted by their value (descending).

  • eigenvectors ( ndarray ) –

    N eigenvectors sorted by descending eigenvalues.

Source code in src/msmhelper/msm/utils/linalg.py
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
@decorit.alias('eigl')
def left_eigenvectors(matrix, nvals=None):
    """Estimate left eigenvectors.

    Estimates the left eigenvectors and corresponding eigenvalues of a
    quadratic matrix.

    Parameters
    ----------
    matrix : ndarray
        Quadratic 2d matrix eigenvectors and eigenvalues or determined of.
    nvals : int, optional
        Number of returned eigenvalues and -vectors. Using ensures probability
        of real valued matrices.

    Returns
    -------
    eigenvalues : ndarray
        N eigenvalues sorted by their value (descending).
    eigenvectors : ndarray
        N eigenvectors sorted by descending eigenvalues.

    """
    matrix = np.asarray(matrix)
    return _eigenvectors(matrix.transpose(), nvals)

right_eigenvectors(matrix, nvals=None)

Estimate right eigenvectors.

Estimates the right eigenvectors and corresponding eigenvalues of a quadratic matrix.

Parameters:

  • matrix (ndarray) –

    Quadratic 2d matrix eigenvectors and eigenvalues or determined of.

  • nvals (int, default: None ) –

    Number of returned eigenvalues and -vectors. Using ensures probability of real valued matrices.

Returns:

  • eigenvalues ( ndarray ) –

    N eigenvalues sorted by their value (descending).

  • eigenvectors ( ndarray ) –

    N eigenvectors sorted by descending eigenvalues.

Source code in src/msmhelper/msm/utils/linalg.py
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
@decorit.alias('eig')
def right_eigenvectors(matrix, nvals=None):
    """Estimate right eigenvectors.

    Estimates the right eigenvectors and corresponding eigenvalues of a
    quadratic matrix.

    Parameters
    ----------
    matrix : ndarray
        Quadratic 2d matrix eigenvectors and eigenvalues or determined of.
    nvals : int, optional
        Number of returned eigenvalues and -vectors. Using ensures probability
        of real valued matrices.

    Returns
    -------
    eigenvalues : ndarray
        N eigenvalues sorted by their value (descending).
    eigenvectors : ndarray
        N eigenvectors sorted by descending eigenvalues.

    """
    matrix = np.asarray(matrix)
    return _eigenvectors(matrix, nvals)

left_eigenvalues(matrix, nvals=None)

Estimate left eigenvalues.

Estimates the left eigenvalues of a quadratic matrix.

Parameters:

  • matrix (ndarray) –

    Quadratic 2d matrix eigenvalues or determined of.

  • nvals (int, default: None ) –

    Number of returned eigenvalues and -vectors. Using ensures probability of real valued matrices.

Returns:

  • eigenvalues ( ndarray ) –

    N eigenvalues sorted by their value (descending).

Source code in src/msmhelper/msm/utils/linalg.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
@decorit.alias('eiglvals')
def left_eigenvalues(matrix, nvals=None):
    """Estimate left eigenvalues.

    Estimates the left eigenvalues of a quadratic matrix.

    Parameters
    ----------
    matrix : ndarray
        Quadratic 2d matrix eigenvalues or determined of.
    nvals : int, optional
        Number of returned eigenvalues and -vectors. Using ensures probability
        of real valued matrices.

    Returns
    -------
    eigenvalues : ndarray
        N eigenvalues sorted by their value (descending).

    """
    matrix = np.asarray(matrix)
    return _eigenvalues(np.transpose(matrix), nvals)

right_eigenvalues(matrix, nvals=None)

Estimate right eigenvalues.

Estimates the right eigenvalues of a quadratic matrix.

Parameters:

  • matrix (ndarray) –

    Quadratic 2d matrix eigenvalues or determined of.

  • nvals (int, default: None ) –

    Number of returned eigenvalues and -vectors. Using ensures probability of real valued matrices.

Returns:

  • eigenvalues ( ndarray ) –

    N eigenvalues sorted by their value (descending).

Source code in src/msmhelper/msm/utils/linalg.py
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
@decorit.alias('eigvals')
def right_eigenvalues(matrix, nvals=None):
    """Estimate right eigenvalues.

    Estimates the right eigenvalues of a quadratic matrix.

    Parameters
    ----------
    matrix : ndarray
        Quadratic 2d matrix eigenvalues or determined of.
    nvals : int, optional
        Number of returned eigenvalues and -vectors. Using ensures probability
        of real valued matrices.

    Returns
    -------
    eigenvalues : ndarray
        N eigenvalues sorted by their value (descending).

    """
    matrix = np.asarray(matrix)
    return _eigenvalues(matrix, nvals)