datasets
Set of datasets to use for the tutorials.
propagate_tmat(tmat, nsteps, start=None)
¶
Markov chain Monte Carlo propagation of transition matrix for nsteps.
Parameters:
-
tmat
(ndarray
) –Transition matrix to propagate.
-
nsteps
(int
) –Number of steps to propagate.
-
start
(int
, default:None
) –Index where to start. If
None
a random number will be used.
Returns:
-
traj
(ndarray
) –Markov chain Monte Carlo state trajectory of given tmat.
Source code in src/msmhelper/utils/datasets.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
hummer15_4state(rate_k, rate_h, nsteps, return_macrotraj=False)
¶
Four state model taken from Hummer and Szabo 15.
Gerhard Hummer and Attila Szabo The Journal of Physical Chemistry B 2015 119 (29), 9029-9037 DOI: 10.1021/jp508375q
Parameters:
-
rate_k
(float
) –Rate between state 1<->2 and 3<->4.
-
rate_h
(float
) –Rate between state 2<->3.
-
nsteps
(int
) –Number of steps to propagate.
-
return_macrotraj
(bool
, default:False
) –If
True
return a macrotraj where state (1,2) and (3,4) are lumped as well.
Returns:
-
traj
(ndarray
) –Markov chain Monte Carlo state trajectory.
-
macrotraj
(ndarray
) –Markov chain Monte Carlo macrostate trajectory if
macrotraj=True
.
Source code in src/msmhelper/utils/datasets.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
hummer15_8state(rate_k, rate_h, nsteps, return_macrotraj=False)
¶
Eight state model inspired by Hummer and Szabo 15.
Gerhard Hummer and Attila Szabo The Journal of Physical Chemistry B 2015 119 (29), 9029-9037 DOI: 10.1021/jp508375q
Parameters:
-
rate_k
(float
) –Rate between state 1<->2, 3<->4, 5<->6, 7<->8.
-
rate_h
(float
) –Rate between state 2<->3, 4<->5, 6<->7.
-
nsteps
(int
) –Number of steps to propagate.
-
return_macrotraj
(bool
, default:False
) –If
True
return a macrotraj where state (1,2), (3,4), (5,6), and (7,8) are lumped as well.
Returns:
-
traj
(ndarray
) –Markov chain Monte Carlo state trajectory.
-
macrotraj
(ndarray
) –Markov chain Monte Carlo macrostate trajectory if
macrotraj=True
.
Source code in src/msmhelper/utils/datasets.py
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
|
nagel20_4state(nsteps)
¶
Four state model taken from Nagel et al. 20.
Daniel Nagel, Anna Weber, and Gerhard Stock Journal of Chemical Theory and Computation 2020 16 (12), 7874-7882 DOI: 10.1021/acs.jctc.0c00774
Parameters:
-
nsteps
(int
) –Number of steps to propagate.
Returns:
-
traj
(ndarray
) –Markov chain Monte Carlo state trajectory.
Source code in src/msmhelper/utils/datasets.py
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
|
nagel20_6state(nsteps)
¶
Six state model taken from Nagel et al. 20.
Daniel Nagel, Anna Weber, and Gerhard Stock Journal of Chemical Theory and Computation 2020 16 (12), 7874-7882 DOI: 10.1021/acs.jctc.0c00774
Parameters:
-
nsteps
(int
) –Number of steps to propagate.
Returns:
-
traj
(ndarray
) –Markov chain Monte Carlo state trajectory.
Source code in src/msmhelper/utils/datasets.py
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
|