|
SparseMatrixF | read_transition_probabilities (std::string fname) |
| read (row-normalized) transition matrix from file
|
|
SparseMatrixF | transition_counts (std::vector< std::size_t > trajectory, std::vector< std::size_t > concat_limits, std::size_t n_lag_steps, std::size_t i_max) |
|
SparseMatrixF | weighted_transition_counts (std::vector< std::size_t > trajectory, std::vector< std::size_t > concat_limits, std::size_t n_lag_steps) |
|
SparseMatrixF | row_normalized_transition_probabilities (SparseMatrixF count_matrix, std::set< std::size_t > microstate_names) |
| compute transition matrix from counts by normalization of rows
|
|
SparseMatrixF | updated_transition_probabilities (SparseMatrixF transition_matrix, std::map< std::size_t, std::size_t > sinks, std::map< std::size_t, std::size_t > pops) |
| update transition matrix after lumping states into sinks
|
|
std::map< std::size_t, std::size_t > | single_step_future_state (SparseMatrixF transition_matrix, std::set< std::size_t > cluster_names, float q_min, std::map< std::size_t, float > min_free_energy) |
|
std::map< std::size_t, std::vector< std::size_t > > | most_probable_path (std::map< std::size_t, std::size_t > future_state, std::set< std::size_t > cluster_names) |
|
std::map< std::size_t, std::size_t > | microstate_populations (std::vector< std::size_t > clusters, std::set< std::size_t > cluster_names) |
| compute cluster populations
|
|
std::map< std::size_t, float > | microstate_min_free_energy (const std::vector< std::size_t > &clustering, const std::vector< float > &free_energy) |
|
std::map< std::size_t, std::size_t > | path_sinks (std::vector< std::size_t > clusters, std::map< std::size_t, std::vector< std::size_t >> mpp, SparseMatrixF transition_matrix, std::set< std::size_t > cluster_names, float q_min, std::vector< float > free_energy) |
|
std::vector< std::size_t > | lumped_trajectory (std::vector< std::size_t > trajectory, std::map< std::size_t, std::size_t > sinks) |
|
std::tuple< std::vector< std::size_t >, std::map< std::size_t, std::size_t >, SparseMatrixF > | fixed_metastability_clustering (std::vector< std::size_t > initial_trajectory, SparseMatrixF trans_prob, float q_min, std::vector< float > free_energy) |
| run clustering for given Q_min value
|
|
void | main (boost::program_options::variables_map args) |
| MPP clustering control function and user interface. More...
|
|
functions related to "Most Probable Path"-clustering
This module contains all function for dynamical clustering. In contrast to density-based clustering, can it only be applied to previously clustered trajectories. The idea is to create, based on a microstate input, a coarse-grained model (macrostates). The most probable path depends strongly on the selected timescale (mpp time). If the input was dynamically cored, the mpp time needs to be greater than the coring time.